Kötter's synthetic geometry of algebraic curves

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometry of Algebraic Curves

The canonical divisor on a smooth plane curve 30 6.2. More general divisors on smooth plane curves 31 6.3. The canonical divisor on a nodal plane curve 32 6.4. More general divisors on nodal plane curves 33

متن کامل

Noncommutative geometry of algebraic curves

We use C-algebras to study complex algebraic curves. Our approach is based on the representation of an algebraic curve of genus g by the interval exchange transformation due to H. Masur, W. Veech et al. We study the C-algebra Oλ connected to such transformation. The main result says that the algebra Oλ, taken up to Morita equivalence, defines the curve C, up to conformal equivalence. The first ...

متن کامل

Moduli of Curves via Algebraic Geometry

Here we discuss some open problems about moduli spaces of curves from an algebro-geometric point of view. In particular, we focus on Arbarello stratification and we show that its top dimentional stratum is affine. The moduli space Mg,n of stable n-pointed genus g curves is by now a widely explored subject (see for instance the book [10] and the references therein), but many interesting problems...

متن کامل

Geometry of Rational Curves on Algebraic Varieties

Geometry of Rational Curves on Algebraic Varieties

متن کامل

Algebraic Geometry Codes from Castle Curves

The quality of an algebraic geometry code depends on the curve from which the code has been defined. In this paper we consider codes obtained from Castle curves, namely those whose number of rational points attains Lewittes’ bound for some rational point Q and the Weierstrass semigroup at Q is symmetric.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Edinburgh Mathematical Society

سال: 1888

ISSN: 0013-0915,1464-3839

DOI: 10.1017/s0013091500030364